

Chapter 4 Quadratic Functions and Factoring

(1, -4)

x

4 -1

WRITING IN INTERCEPT FORM Write a quadratic function in intercept form whose graph has the given x-intercepts and passes through the given point.

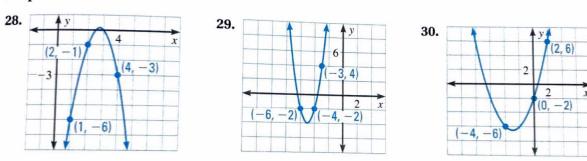
- point: (4, -2)
- 23. x-intercepts: 3, 7 point: (6, -9)
- **21.** *x*-intercepts: -3, 0 point: (2, 10) **24.** *x*-intercepts: -5, -1 point: (-7, -24)

22. *x*-intercepts: -1, 4 point: (2, 4)

25. *x*-intercepts: -6, 3 point: (0, -9)

ERROR ANALYSIS Describe and correct the error in writing a quadratic function whose graph has the given x-intercepts or vertex and passes through the given

26. x-intercepts: 4,
$$-3$$
; point: $(5, -5)$


$$y = a(x - 5)(x + 5)$$

-3 = a(4 - 5)(4 + 5)
-3 = -9a
$$\frac{1}{3} = a, \text{ so } y = \frac{1}{3}(x - 5)(x + 5)$$

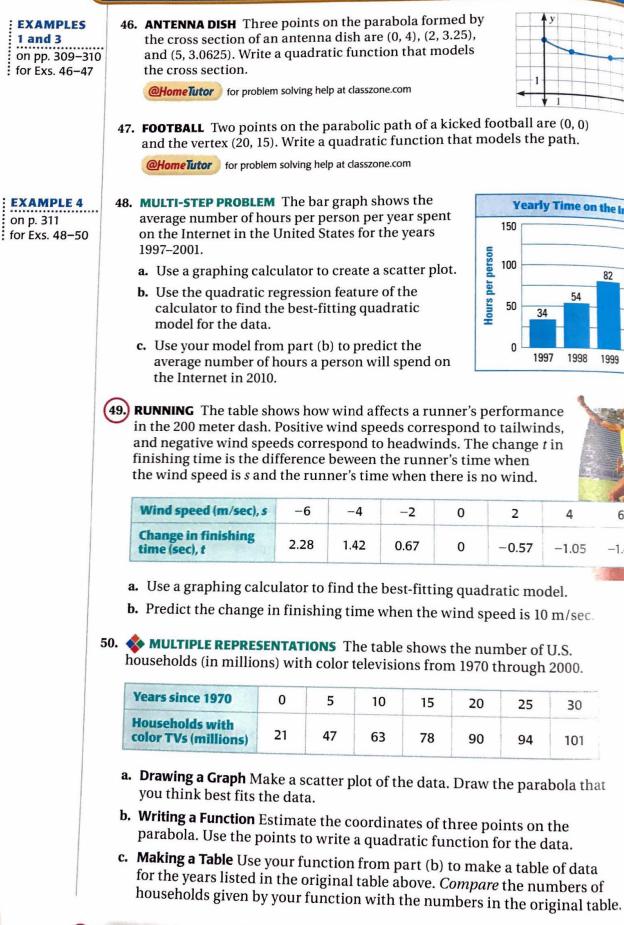
y = a(x-2)(x-3)5 = a(1-2)(1-3)5 = 2a $\frac{5}{2} = a$, so $y = \frac{5}{2}(x - 2)(x - 3)$

27. vertex: (2, 3); point: (1, 5)

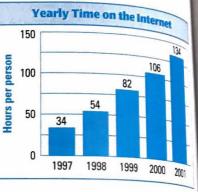
WRITING IN STANDARD FORM Write a quadratic function in standard form for the parabola shown.

EXAMPLE 3 on p. 310 for Exs. 28-39

WRITING IN STANDARD FORM Write a quadratic function in standard form for the parabola that passes through the given points.


31. (-4, -3), (0, -2), (1, 7)	32. (-2, -4), (0, -10), (3, -7)	33. (-2, 4), (0, 5), (1, -11)
34. (-1, -1), (1, 11), (3, 7)	35. (-1, 9), (1, 1), (3, 17)	36. (-6, -1), (-3, -4), (3, 8)
37. (-2, -13), (2, 3), (4, 5)	38. (-6, 29), (-4, 12), (2, -3)	39. (-3, -2), (3, 10), (6, -2)

WRITING QUADRATIC FUNCTIONS Write a quadratic function whose graph has the given characteristics.


40. passes through:	41. <i>x</i> -intercepts: -11, 3	42. vertex: (4.5, 7.25)
(-0.5, -1), (2, 8), (11, 25)	passes through: (1, -192)	passes through: $(7, -3)$

- **43.** \star **OPEN-ENDED MATH** Draw a parabola that passes through (-2, 3). Write a function for the parabola in standard form, intercept form, and vertex form.
- 44. **★ SHORT RESPONSE** Suppose you are given a set of data pairs (x, y). Describe how you can use ratios to determine whether the data can be modeled by a quadratic function of the form $y = ax^2$.
- **45.** CHALLENGE Find a function of the form $y = ax^2 + bx + c$ whose graph passes through (1, -4), (-3, -16), and (7, 14). Explain what the model tells you about the points.

PROBLEM SOLVING

1

2

-0.57

25

94

4

-1.05

30

101

6

-1.42

= STANDARDIZED **TEST PRACTICE**

A. C. C.			
	51. ★ MULTIPLE CHOICE The Garabit Viaduct in France has a parabolic arch as part of its support. Three points on the parabola that models the arch are (0, 0), (40, 38.2), and (165, 0) where x and y are measured in meters. Which point is also on the parabola?		
	(10, -11.84) (B) (26.74, 25) (C) (80, 51.95) (D) (125, 45)		
	52. CHALLENGE Let <i>R</i> be the maximum number of regions into which a circle can be divided using <i>n</i> chords. For example, the diagram shows that $R = 4$ when $n = 2$. Copy and complete the table. Then write a quadratic model giving <i>R</i> as a function of <i>n</i> .		
	a 0 1 2 3 4 5 6	atte	
	R ? ? 4 ? ? ? ? ?		
6	TEST PRACTICE at classzone.com		
MOZ	MISSOURI MIXED REVIEW		
6	53. Charlie receives some money for his birthday. He deposits one third of the money in the bank. He purchases a concert ticket for \$45. Then he spends half of the remaining money on dinner. Charlie has \$8.50 left. How much money did he receive for his birthday?		
	(A) \$80 (B) \$93 (C) \$118 (D) \$124		
	54. Which equation represents a line that is parallel to the line that passes		
	through $(-4, 9)$ and $(5, -5)$?		
	(A) $-4x + 3y = 29$ (B) $2x + 3y = 9$ (D) $2x - 3y = 11$		
	(c) $4x + 3y = -12$ (b) $2x - 3y = 11$		
0	UIZ for Lessons 4.8–4.10		
6	We the quadratic formula to solve the equation. (p. 292)	111	
-	Use the quadratic formula to solve the equation $x^2 - 4x + 5 = 0$ 1. $x^2 - 4x + 5 = 0$ 2. $2x^2 - 8x + 1 = 0$ 3. $3x^2 + 5x + 4 = 0$	111	
	Graph the inequality. (p. 300) 4. $y < -3x^2$ 5. $y > -x^2 + 2x$ 6. $y \ge -x^2 + 2x + 3$	a b	
	Solve the inequality. (p. 300) 9. $2x^2 + 2 > -5x$		
	8. $12 \le x^2 - 7x$		
	has the given characteristics. (p. 309)		
	10. vertex: $(5, 7)$ passes through: $(3, 11)$ 11. x-interceptor passes through: $(7, -40)$ $(-1, 2), (4, -23), (2, -1)$ passes through: $(7, -40)$		
	 13. SPORTS A person throws a baseball into the air with an initial vertical velocity of 30 feet per second and then lets the ball hit the ground. The ball is released 5 feet above the ground. How long is the ball in the air? (p. 292) 		
		315	
	EXTRA PRACTICE for Lesson 4.10, p. 1013 ONLINE QUIZ at classzone.com		